CH₂-Species as Important Precursors for Hydrocarbon Formation on Cobalt Catalysts

Ken-ichi Tanaka, Isamu Yaegashi, and Kazuo Aomura Department of Chemistry, The Faculty of Engineering, Hokkaido University, Sapporo 060, Japan

 CH_2 -Species were formed on a cobalt catalyst by the Boudouard reaction or by the decomposition of methane; hydrogenation yielded methane as well as α -olefins, while the hydrogenation of carbidic carbon yielded merely methane.

The nature of the precursor species for hydrocarbon formation from CO and H_2 has been the subject of speculation by many investigators; it has been shown that the carbon formed on catalysts following the dissociation of CO is an important precursor for methane¹ as well as for higher hydrocarbons.² On the other hand, if CH2-species were produced on transition-metal catalysts by decomposing CH₂N₂ in the presence of hydrogen, hydrocarbons similar to those produced in the Fischer-Tropsch reaction were obtained.³ Furthermore, recent results by Theopold and Bergman⁴ indicated that a bridging CH_2 -ligand in μ -CH₂Co₂(CO)₂- $(n^{5}-C_{5}H_{5})_{2}$ reacts with ethylene to yield propene. Our interest has focused on the reactivity and/or selectivity of carbonaceous species for the hydrogenation, and we now report results obtained with carbonaceous species prepared on cobalt catalysts by the Boudouard reaction or by decomposing methane.

These carbonaceous species might be composed of CH_x , carbidic carbon, and/or free carbon, which will contribute differently to the hydrocarbon-formation processes, and the different species could be successfully distinguished by using ¹³C and ²H labelled materials. The catalysts, Co/Al₂O₃ (6.0 wt %) or Co/C (14.7 wt %), were reduced for 1 h at 430 °C in a circulation system of volume *ca*. 275 ml. After the reduction, carbonaceous species were deposited on the catalysts by decomposition of methane or by the Boudouard reaction at 430 °C. The carbon-deposited catalysts were evacuated at 430 °C for about 1 h before the experiments.

As cobalt carbide is unstable at 430 $^{\circ}$ C,⁶ carbidic carbon, if formed, may rapidly decompose to the less reactive free carbon at 430 $^{\circ}$ C. When these carbon-deposited cobalt catalysts were exposed to H₂ or D₂, methane was formed rapidly in the initial stage of the reaction. To identify the nature of the reactive species on the carbon-deposited surface,

Table 1. Deuterium distribution in the methane obtained from treatment of carbonaceous species deposited on cobalt catalysts with deuterium at 430 °C.

		Deduction	Donosition	Indragonation	Methane (%)				
Run	Catalyst	Reduction of catalyst	Deposition of carbon	Hydrogenation (30 Torr)	CH4	CH3D	$\overline{CH_2D_2}$	CHD ₃	CD_4
1	Co/Al_2O_3	H_{2}	CH₄	\mathbf{D}_2	60	7	24	8	1
2		H,	CO	\mathbf{D}_{2}^{-}	38	15	34	8	5
3	Co/C	H_{s}	CH₄	$\mathbf{D_2}^-$	9	10	60	14	7
4	Co/Al_2O_3	H_{2}	CH ₂ CO ^a	\mathbf{D}_{2}^{-}	68	5	26	1	0
5	,, - •	H_2	CD_{4}^{b}	H_2	8	10	56	4	22
6°	Co/C	\mathbf{H}_{2}	CO	\mathbf{D}_{2}^{-}	0	1	14	34	51
7	····	D_2	None	D_2	2	2	8	39	49

^a Decomposition at 450 °C yielded CO with little CO₂, H₂, and hydrocarbons. ^b Isotopic distribution in the methane used: CH₄, 6; CH₃D, 5; CH₂D₂, 10; CHD₃, 3; CD₄, 76%. ^c Deposition and deuterium treatment were performed at 210 °C.

the carbon-deposited Co/Al₂O₃ was treated with deuterium at 430 °C. Runs 1 and 2 in Table 1 show the deuterium distribution of the methane obtained in the initial 30 s, and it is clear that a disproportionate quantity of CH_2D_2 was formed. Treatment of the carbon-deposited Co/C catalyst with deuterium also yielded a disproportionate amount of CH_2D_2 (run 3), and the relative proportion of CH_2D_2 was greater than that obtained on the Co/Al₂O₃ catalyst. These results suggest the presence of a reactive species such as CH₂ on the carbon-deposited cobalt catalysts. The formation of CH2D2 may be caused by the rapid reaction of CH2-species with D₂ accompanied by slow hydrogen scrambling. In an attempt to confirm this proposed presence of CH₂-species, keten was decomposed on the Co/Al₂O₃ catalyst at 450 °C, followed by treatment with deuterium at 430 °C. The deuterium distribution in the methane obtained (run 4) is similar to that in runs 1 and 2, *i.e.* CH_4 and CH_2D_2 were prominent.

In run 5, carbon was deposited from CD_4 at 430 °C; hydrogenation with H₂ gave CD_4 and CD_2H_2 . This result and those from runs 1—4 suggest that CH_2 - or CD_2 -species formed on the cobalt catalysts by the decomposition of CH_4 or CD_4 are quite reactive with hydrogen. However, the details of the mechanism of the formation of CH_4 or CD_4 in these experiments on the Co/Al₂O₃ catalyst are ambiguous at present. In all the experiments the carbonaceous species formed on the cobalt catalysts at 430 °C are mainly in the form of the less reactive free carbon; CH_2 -species comprise only a small portion of the deposited carbon.

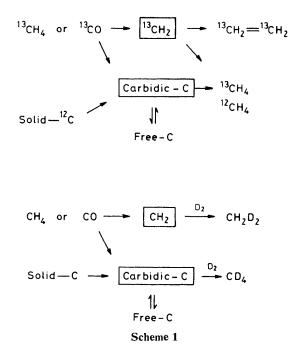

The products of the hydrogenation of the carbon-deposited Co/C catalyst were found to contain ethylene and propene as well as methane, whereas the hydrogenation of Co/C on which no carbonaceous species had been deposited yielded only methane and no ethylene or propene; *i.e.* the gasification of solid carbon under the same experimental conditions gave only methane. To study the intermediate species for formation of methane as well as of higher hydrocarbons, carbidic carbon was treated with deuterium. By performing the Boudouard reaction with D_2 at 210 °C, carbidic carbon can be prepared on the cobalt catalyst, which is more reactive with D_2 than the free carbon. The methane obtained from treatment of the carbidic carbon at 210 °C showed a rather random deuterium distribution as shown in run 6;

Table 2. Isotopic distribution in the methane and ethylene obtained in the hydrogenation of a ¹³C-deposited Co/C catalyst at 430 °C with 65 Torr of H_2 .

Metha	ne (%)	Ethylene (%)				
12CH4	¹³ CH ₄	12C2H4	¹² CH ₂ = ¹³ CH ₂	¹³ C ₂ H ₄		
69	31	1	32	67		

i.e., a disproportionate amount of CH_2D_2 was not formed as it was in runs 1, 2, and 3. Of more interest is the fact that the methane obtained from treatment with deuterium of the solid carbon support for the Co catalyst (run 7) at 430 °C has a very similar deuterium distribution to that obtained from treatment of the carbidic carbon catalyst at 210 °C (run 5).

This suggests that the hydrogenation of the solid carbon to methane may occur via carbidic carbon formed on the cobalt surface. The contribution of the carbidic carbon in the formation of higher hydrocarbons such as C_2H_4 and C₃H₆ was confirmed by depositing ¹³C from ¹³CH₄ on a Co/C catalyst. The methane and ethylene obtained in the first 10 min at 430 °C were analysed by mass spectroscopy. A substantially different ¹³C content was observed: 31% in the methane compared with 83% in the ethylene (Table 2). This shows that the precursor species for methane from solid carbon do not undergo scrambling with the precursor species for ethylene. Provided that the hydrogenation of solid carbon as well as of free carbon proceeds via formation of carbidic carbon, the CH₂-species is an important precursor for methane as well as for olefins, whereas the carbidic carbon vields only methane (Scheme 1). Formation of propene in the hydrogenation of the carbon-deposited cobalt catalyst suggests a homologation-type reaction between CH₂-species

and C_2H_4 as occurs on W-metal,⁶ Mo- and W-complexes,⁷ Ti-complexes,⁸ and Pt-complexes.⁹

We have recently found that the reaction of ${}^{12}C_2H_4$ with a ${}^{13}C$ -deposited cobalt catalyst yielded propene containing one ${}^{13}C$ -atom, which supports the metallacyclobutane mechanism proposed for the homologation reaction.⁶

We thank Professor K. Miyahara, Research Institute for Catalysis, Hokkaido University, for mass spectroscopic analysis.

Received, 16th March 1982; Com. 306

References

1 M. Araki and V. Ponec, J. Catal., 1976, 44, 439; J. G. McCarty and H. Wise, *ibid.*, 1979, 57, 406.

- 2 P. Biloen, J. N. Helle, and W. M. H. Sachtler, J. Catal., 1975, 58, 95.
- 3 R. C. Brady III and R. Pettit, J. Am. Chem. Soc., 1980, 102, 6181.
- 4 K. H. Theopold and R. G. Bergman, J. Am. Chem. Soc., 1981, 103, 2489.
- 5 H. A. Bahr and V. Jessen, Ber., 1930, 63B, 2, 226.
- 6 C. O'Donohoe, J. K. A. Clarke, and J. J. Rooney, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 345.
- 7 K. J. Ivin, J. J. Rooney, and C. D. Stewart, J. Chem. Soc., Chem. Commun., 1978, 604.
- 8 F. N. Tebbe, G. W. Parshall, and D. W. Ovenall, J. Am. Chem. Soc., 1979, 101, 5074; F. N. Tebbe, G. W. Parshall, and G. S. Reddy, *ibid.*, 1978, 100, 3611.
- 9 S. S. M. Ling and R. J. Puddephatt, J. Chem. Soc., Chem. Commun., 1982, 412.